Research article

Phylogenetic analysis of Chosenia arbutifolia (Pall.) A. Skv. in Salicaceae using complete chloroplast genome sequence

Xudong He , Yu Wang, Jiwei Zheng, Zhongyi Jiao, Jie Zhou, Baosong Wang, Qiang Zhuge

Xudong He
Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China. Email: hxd_519@163.com
Yu Wang
Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
Jiwei Zheng
Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
Zhongyi Jiao
Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
Jie Zhou
Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
Baosong Wang
Department of Tree Genetics and Breeding, Jiangsu Academy of Forestry, Nanjing, China Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing, China
Qiang Zhuge
College of Biology and the Environment, Nanjing Forestry University, Nanjing, China

Online First: June 27, 2022
He, X., Wang, Y., Zheng, J., Jiao, Z., Zhou, J., Wang, B., Zhuge, Q. 2022. Phylogenetic analysis of Chosenia arbutifolia (Pall.) A. Skv. in Salicaceae using complete chloroplast genome sequence. Annals of Forest Research DOI:10.15287/afr.2022.2153


As a unique and endangered species in the family Salicaceae, Chosenia arbutifolia (Pall.) A. Skv. has great potential for use in ornamental and industrial purposes. Despite its comprehensive importance, the phylogenetic position of C. arbutifolia within Salicaceae is still ambiguous. In the present study, the whole chloroplast genome of C. arbutifolia was sequenced and compared with the genome of other Salicaceae species. A phylogenetic tree was established based on the maximum-likelihood (ML) methods. The de novo assemblies generated 155684 bp in length for the completed cp genome of C. arbutifolia, including a large single-copy region of 84551 bp, a small single-copy region of 16217 bp, and two inverted repeat regions of 27458 bp each. In total, 130 genes were predicted, of which 85 protein-coding genes were annotated in at least one of the five reference databases. In the repeat analysis, 23 forward, 15 palindromic, one complement, one reverse long repeats, and 221 putative SSRs were identified. The results of genome comparison showed that the large single copy region (LSC) region was more divergent than the small single copy region (SSC) and inverted repeated (IR) regions, and a higher divergence occurred in non-coding regions than in coding regions. Significant contractions or expansions were also observed at the IR-LSC/SSC boundaries. Phylogenetic analysis of 20 Salicaceae species confirmed that C. arbutifolia is closely related to Salix species and may therefore be treated as a member of the genus Salix. The complete C. arbutifolia chloroplast genome will provide insight into the chloroplast architecture, function, and evolution of this species and provide additional resources for future research


Asaf S., Khan A.L., Khan M.A., Shahzad R., Lubna, Kang S.M., Al-Harrasi A., Al-Rawahi A., Lee I.J. 2018. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS ONE 13(3): e0192966. https://doi.org/10.1371/journal.pone.0192966

Azuma T., Kajita T., Yokoyama J., Ohashi H. 2000. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am. J. Bot. 87(1): 67-75. https:// doi.org/10.2307/2656686

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. https://doi. org/10.1093/oxfordjournals.molbev.a026334

Chen J.H., Hao Z.D., Xu H.B., Yang L.M., Liu G.X.,Sheng Y., Zheng C., Zheng W.W., Cheng T.L., Shi J.S. 2015. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front. Plant Sci. 6: 447. https://doi.org/10.3389/ fpls.2015.00447

Chen J.H., Sun H., Wen J., Yang Y.P. 2010. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon 59: 29-37. https://doi.org/10.1002/tax.591004

Chen Y.N., Hu N., Wu H.T. 2019. Analyzing and characterizing the chloroplast genome of Salix wilsonii. BioMed Res. Int. Article ID: 5190425. https://doi. org/10.1155/2019/5190425

Cronn R., Liston A., Parks M., Gernandt D.S., Shen R., Mockler T. 2008. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by- synthesis technology. Nucleic Acids Res. 36: e122. https://doi.org/10.1093/nar/gkn502

Daniell H., Lin C.S., Yu M., Chang W.J. 2016. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 17: 134. https://doi. org/10.1186/s13059-016-1004-2

Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772. https://doi. org/10.1038/nmeth.2109

De Las Rivas J., Lozano J.J., Ortiz A.R. 2002. Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res. 12(4): 567-583. https://doi. org/10.1101/gr.209402

Drescher A., Ruf S., Calsa Jr T., Carrer H., Bock R. 2000. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22(2): 97-104. https://doi.org/10.1046/j.1365- 313X.2000.00722.x

Ebert D., Peakall R. 2009. Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol. Ecol. Resour. 9(3): 673-690. https://doi.org/10.1111/j.1755- 0998.2008.02319.x

Eguiluz M., Rodrigues N.F., Guzman F., Yuyama P., Margis R. 2017. The chloroplast genome sequence from Eugenia uniflora, a Myrtaceae from Neotropics. Plant Syst. Evol. 303: 1199-1212. https://doi.org/10.1007/ s00606-017-1431-x

Feng C. H., He C. Y., Wang Y., Zeng Y. F., Zhang J. G. 2019. Phylogenetic position of Chosenia arbutifolia in the Salicaceae inferred from whole chloroplast genome. Forest Res. 32(2): 73-77. https://doi.org/10.13275/j. cnk.lykxyj.2019.02.011

Guisinger M.M., Kuehl J.V., Boore J.L., Jansen R.K. 2011. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol. Biol. Evol. 28: 583-600. https://doi.org/10.1093/molbev/msq229

Hardig T.M., Anttila C.K., Brunsfeld S.J. 2010. A phylogenetic analysis of Salix (Salicaceae) based on matK and ribosomal DNA sequence data. J. Bot. Article ID: 197696. https://doi.org/10.1155/2010/197696

Ingvarsson P.K., Ribstein S., Taylor D.R. 2003. Molecular revolution of insertions and deletion in the chloroplast genome of Silene. Mol. Biol. Evol. 20: 1737-1740. https://doi.org/10.1093/molbev/msg163

Jheng C.F., Chen T.C., Lin J.Y., Chen T.C., Wu W.L., Chang C.C. 2012. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci. 190:62-73. https://doi.org/10.1016/j. plantsci.2012.04.001

Kadis I. 2005. Chosenia: an amazing tree of Northeast Asia. Arnoldia 63: 8-17.

Katoh K., Kuma K.I., Toh H., Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33: 511-518. https://doi.org/10.1093/nar/gki198

Kurtz S., Choudhuri J.V., Ohlebusch E., Schleiermacher C., Stoye J., Giegerich R. 2001. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29: 4633-4642. https://doi. org/10.1093/nar/29.22.4633

Leskinen E., Alström-Rapaport C. 1999. Molecular phylogeny of Salicaceae and closely related Flacourtiaceae: evidence from 5.8 S, ITS 1 and ITS 2 of the rDNA. Plant Syst. Evol. 215: 209-227. https://doi. org/10.1007/BF00984656

Li X., Li Y.F., Zang M.Y., Li M.Z., Fang Y.M. 2018. Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. Int. J. Mol. Sci. 19: 2443. https://doi.org/10.3390/ijms19082443

Lohse M., Drechsel O., Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52: 267-274. https://doi.org/10.1007/s00294-007-0161-y

Lu D.Y., Zhang L., Zhang G.S., Hao L. 2020. Chloroplast genome structure and variation of Salicaceae plants.

J. Northwest A&F Univ. (Nat. Sci. Ed.), 48(2): 87-94. https://doi.org/10.13207/j.cnki.jnwafu.2020.02.011

Mader M., Pakull B., Blanc-Jolivet C., Paulini-Drewes M., Bouda Z.H.N., Degen B., Small I., Kersten B. 2018. Complete chloroplast genome sequences of four Meliaceae species and comparative analyses. Int. J. Mol. Sci. 19: 701. https://doi.org/10.3390/ijms19030701

Mayor C., Brudno M., Schwartz J.R., Poliakov A., Rubin E.M., Frazer K.A., Pachter L.S., Dubchak I. 2000. Vista: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046-1047. https:// doi.org/10.1093/bioinformatics/16.11.1046

McPherson H., van der Merwe M., Delaney S.K., Edwards M.A., Henry R.J., McIntosh E., Rymer P.D., Milner M.L., Siow J., Rossetto M. 2013. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol. 13: 8. https://doi.org/10.1186/1472-6785-13-8

Moskalyuk T.A. 2016. Chosenia arbutifolia (Salicaceae): life strategies and introduction perspectives. Sibirskij Lesnoj Zurnal (Sib J For Sci) 3: 34-45 (in English with Russian abstract).

Nakai T. 1920. Chosenia, a new genus of Salicaceae. Bot. Mag. (Tokyo) 34: 66-69.

Neuhaus H.E., Emes M.J. 2000. Nonphotosynthetic metabolism in plastids. Annu. Rev. Plant Biol. 51: 111-140. https://doi.org/10.1146/annurev.arplant.51.1.111 Ohashi H. 2001. Salicaceae of Japan. Sci. Rep. Tôhoku Imp. Univ. Ser. 4 40: 269-396.

Palmer J.D. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19: 325-354. https://doi. org/10.1146/annurev.ge.19.120185.001545

Powell W., Morgante M., Andre C., McNicol J.W., Machray G.C., Doyle J.J., Tingey S.V., Rafalski

J.A. 1995. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr. Biol. 5: 1023-1029. https:// doi.org/10.1016/S0960-9822(95)00206-5

Provan J., Powell W., Hollingsworth P.M. 2001. Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol. Evol. 16(3): 142-147. https://doi.org/10.1016/S0169-5347(00)02097-8

Raubeson L.A., Peery R., Chumley T.W., Dziubek C., Fourcade H.M., Boore J.L., Jansen R.K. 2007. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8(1): 174. https://doi.org/10.1186/1471-2164-8-174

Skvortsov A.K. 1999. Willows of Russia and adjacent countries. Taxonomical and geographical revision (English translation with additions). Univ. Joensuu. Fac. Math. Nat. Sci. Rep. Ser. 39: 1-307.

Song Y., Dong W.P., Liu B., Xu C., Yao X., Gao J., Corlett R.T. 2015. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front. Plant Sci. 6: 662. https://doi. org/10.3389/fpls.2015.00662

Soranzo N., Provan J., Powell W. 1999. An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42: 158-161. https://doi. org/10.1139/g98-111

Sun C.R., Li J., Dai X.J., Chen Y.N. 2018. Analysis and characterization of the Salix suchowensis chloroplast genome. J. For. Res. 29(4): 1003-1011. https://doi. org/10.1007/s11676-017-0531-3

Tangphatsornruang S., Uthaipaisanwong P., Sangsrakru D., Chanprasert J., Yoocha T., Jomchai N., Tragoonrung S. 2011. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene 475: 104-112. https://doi. org/10.1016/j.gene.2011.01.002

Tian X.Y., Zheng J.W., Jiao Z.Y., Zhou J., He K.Y., Wang B.S., He X.D. 2019. Transcriptome sequencing and EST-SSR marker development in Salix babylonica and S. suchowensis. Tree Genet. Genomes 15: 9. https://doi. org/10.1007/s11295-018-1315-4

Tóth G., Gáspári Z., Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10: 967-98. https://doi.org/10.1101/ gr.10.7.967

Tu Z.Y. 1982. Breeding and cultivation of Salix. Jiangsu Science and Technology Press, Nanjing, p. 154-196.


Varshney R.K., Graner A., Sorrells M.E. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23(1): 48-55. https:// doi.org/10.1016/j.tibtech.2004.11.005

Walker J.F., Zanis M.J., Emery N.C. 2014. Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae). Am. J. Bot. 101: 722-729. https://doi. org/10.3732/ajb.1400049

Wang R.J., Cheng C.L., Chang C.C., Wu C.L., Su T.M., Chaw S.M. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 8: 36. https://doi.org/10.1186/1471-2148-8-36

Wang Z., Fang C.F. 1984. Salicaceae. In: Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp 79-81.

Wicke S., Schneeweiss G.M., DePamphilis C.W., Müller K.F., Quandt D. 2011. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 76: 273-297. https://doi. org/10.1007/s11103-011-9762-4

Wu Z.Q. 2015. The new completed genome of purple willow (Salix purpurea) and conserved chloroplast genome structure of Salicaceae. JNSCI 1(3): e49.

Wullschleger S.D., Weston D.J., DiFazio S.P., Tuskan G.A. 2013. Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol. 33: 357-364. https:// doi.org/10.1093/treephys/tps081

Wyman S.K., Jansen R.K., Boore J.L. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. https://doi.org/10.1093/ bioinformatics/bth352

Zhang L., Xi Z.X., Wang M.C., Guo X.Y., Ma T. 2018.

Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol. Evol. 8: 7817-7823. https://doi.org/10.1002/ece3.4261

Zhao J.T., Xu Y., Xi L.J., Yang J.W., Chen H.W., Zhang

J. 2018. Characterization of the chloroplast genome sequence of Acer miaotaiense: comparative and phylogenetic analyses. Molecules 23: 1740. https://doi. org/10.3390/molecules23071740


covering letter
| DOWNLOAD 36KB
Figures
| DOWNLOAD 1MB
No metrics available for this article.