Research article

Forest tree dynamics from the first four years of permanent plot in Mount Papandayan, Indonesia: mortality, recruitment, and growth

Endah Sulistyawati , Nuri Nurlaila Setiawan, Ahmad Iqbal, Reza Alhumaira, Sylvanita Fitriana, Theo Syamuda, Devi Nandita Choesin

Endah Sulistyawati
School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia. Email: endah@sith.itb.ac.id
Nuri Nurlaila Setiawan
Independent researcher, Indonesia
Ahmad Iqbal
School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
Reza Alhumaira
School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
Sylvanita Fitriana
School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
Theo Syamuda
School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
Devi Nandita Choesin
School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia

Online First: July 04, 2022
Sulistyawati, E., Setiawan, N., Iqbal, A., Alhumaira, R., Fitriana, S., Syamuda, T., Choesin, D. 2022. Forest tree dynamics from the first four years of permanent plot in Mount Papandayan, Indonesia: mortality, recruitment, and growth. Annals of Forest Research DOI:10.15287/afr.2022.2117


A permanent plot is a powerful tool to study the vegetation’s dynamics and regeneration in the forest ecosystem. This study presents the first four-year tree vegetation monitoring in a one-hectare permanent plot established in a mixed forest of Mount Papandayan (MP) Nature Reserve, Indonesia. Besides studying the structure and floristic tree community composition in the plot, this study aims to study the changes and in mortality and growth of the tree community after four years of plot establishment. A one-hectare permanent plot was established in 2010 and all trees inside the plot with a diameter over 5 cm were tagged and measured in 2011 and 2015. There were 1,820 trees from 33 species and 20 families recorded during the first monitoring in 2011. Four years later, there were more trees recorded (1,845 trees) with an average growth rate of 1.17 cm. The mortality rate (2.8%) was lower than the recruitment rate (4.2%) and there were no changes in the domination of Distylium stellare. The results of this study will help to provide the preliminary data on actual in situ tree mortality and growth, which will help to develop a more complete tree species selection criteria for MP restoration.


Abbot P., Tooker J., Lawson S.P., 2018. Chemical ecology and sociality in aphids: Opportunities and directions. J. Chem. Ecol. 44, 770–784. https://doi.org/10.1007/ s10886-018-0955-z

Backer C., van den Brink B., 1968. Flora of Java, 3 volumes. ed. Noordhoff NV, Groningen, The Netherlands.

Baithalu S., Anbarashan M., Parthasarathy N., 2013. Two- decadal changes in forest structure and tree diversity in a tropical dry evergreen forest on the Coromandel Coast of India. Trop. Ecol. 54, 397–403.

Balai Konservasi Sumber Daya Alam Jabar II, 2003. Laporan Operasi Khusus Pengamanan Hutan Wanalaga (Lodaya) Tahun 2003 di Kabupaten Garut. Balai Konservasi Sumber Daya Alam Jabar II, Jawa Barat.

Borcard D., Gillet F., Legendre P., 2011. Numerical Ecology with R. Springer, New York. https://doi. org/10.1007/978-1-4419-7976-6

Brearley F.Q., Adinugroho W.C., Cámara-Leret R., Krisnawati H., Ledo A., Qie L., Smith T.E.L., Aini F., Garnier F., Lestari N.S., Mansur M., Murdjoko A., Oktarita S., Soraya E., Tata H.L., Tiryana T., Trethowan L.A., Wheeler C.E., Abdullah M., Aswandi Buckley B.J.W., Cantarello E., Dunggio I., Gunawan H., Heatubun C.D., Arini D.I.D., Istomo Komar T.E., Kuswandi R., Mutaqien Z., Pangala S.R., Ramadhanil Prayoto Puspanti A., Qirom M.A., Rozak A.H., Sadili A., Samsoedin I., Sulistyawati E., Sundari S., Sutomo Tampubolon A.P., Webb, C.O., 2019. Opportunities and challenges for an Indonesian forest monitoring network. Ann. For. Sci. 76. https://doi.org/10.1007/s13595-019- 0840-0

Cahyanto T., Efendi M., Shofara R.M., Dzakiyyah M., Nurlaela Satria P.G., 2019. Short communication: Floristic survey of vascular plant in the submontane forest of Mt. Burangrang nature reserve, West Java, Indonesia. Biodiversitas 20, 2197–2205. https://doi. org/10.13057/biodiv/d200813

Cai W., Borlace S., Lengaigne M., Van Rensch P., Collins M., Vecchi G., Timmermann A., Santoso A., Mcphaden M.J., Wu L., England M.H., Wang G., Guilyardi E., Jin F.F., 2014. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 4, 111–116. https://doi.org/10.1038/nclimate2100

Chazdon R.L., Brenes A.R., Alvarado B.V., 2005. Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. Ecology 86, 1808– 1815. https://doi.org/10.1890/04-0572

Culmsee H., Pitopang R., Mangopo H., Sabir S., 2011. Tree diversity and phytogeographical patterns of tropical high mountain rain forests in Central Sulawesi, Indonesia. Biodivers. Conserv. 20, 1103–1123. https:// doi.org/10.1007/s10531-011-0019-y

Curtis J.T., & Mcintosh R.P., 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31(3), 434-455. http://www.jstor. org/stable/1931497

Dore M.H.I., 2005. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 31, 1167–1181. https://doi.org/10.1016/j. envint.2005.03.004

Endress P.K., 1993. Hamamelidaceae. In: Kubitzki K., Rohwer J.G., Bittrich V. (Eds.), The Families and Genera of Vascular Plants. Volume II: Flowering Plants- Dicotyledons. Springer-Verlag, Berlin Heidelberg, pp. 322–331.

FAO, 2020. Global Forest Resources Assessment 2020: Main Report. Food and Agriculture Organization of The United Nations, Rome.

FORRU, 2006. How to plant a forest: the principles and practice of restoring tropical forests. Biology Department, Science Faculty, Chiang Mai University, Chiang Mai, Thailand.

Hakim L., Miyakawa H., 2013. Plant trees species for restoration program in Ranupani, Bromo Tengger Semeru National Park Indonesia. Biodivers. J. 4, 387– 394.

Holman J., 2009. The aphids and their host plants. In: Holman J. (Ed.), Host Plant Catalog of Aphids. Springer Netherlands, Dordrecht, pp. 7–651. https://doi. org/10.1007/978-1-4020-8286-3_2

Jalonen R., Elliott S., 2014. Framework species method. In: Genetic Considerations in Ecosystem Restoration Using Native Tree Species. State of the World’s Forest Genetic Resources – Thematic Study. FAO and Bioversity International, Rome, pp. 144–148.

Junaedi D.I., Mutaqien Z., 2010. Diversity of tree communities in Mount Patuha Region, West Java. Biodiversitas, J. Biol. Divers. 11, 75–81. https://doi. org/10.13057/biodiv/d110205

King D.A., Davies S.J., Nur Supardi M.N., Tan S., 2005. Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Funct. Ecol. 19, 445–453. https://doi.org/10.1111/ j.1365-2435.2005.00982.x

King D.A., Davies S.J., Tan S., Noor N.S.M., 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees. J. Ecol. 94, 670– 680. https://doi.org/10.1111/j.1365-2745.2006.01112.x

Laumonier Y., 1997. The vegetation and physiography of Sumatra. Kluwer Academic Publishers, Dordrecht. https://doi.org/10.1007/978-94-009-0031-8

Lieberman D., Lieberman M., Peralta R., Hartshorn G.S., 1996. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84, 137. https://doi.org/10.2307/2261350

Lu Y., Ranjitkar S., Harrison R.D., Xu J., Ou X., Ma X., He J., 2017. Selection of native tree species for subtropical forest restoration in Southwest China. PLoS One 12, 1–15. https://doi.org/10.1371/journal.pone.0170418

Magurran A.E., 2013. Measuring biological diversity. John Wiley & Sons, Inc.

Majid N.M., 2014. Tropical rainforest rehabilitation project in Malaysia using the Miyawaki Method. In: Bozzano M., Jalonen R., Thomas E., Boshier D., Gallo L., Cavers S., Bordács S., Smith P., Loo J. (Eds.), Genetic Considerations in Ecosystem Restoration Using Native Tree Species. State of the World’s Forest Genetic Resources – Thematic Study. FAO and Bioversity International, Rome, pp. 137–144.

Marshall A., Beehler B., 2012. The ecology of Papua. Part Two. 2nd ed., Periplus Editions, Hong Kong.

Measey M., 2010. Indonesia: A vulnerable country in the face of climate change. Glob. Major. E-Journal 1, 46–56.

Melo J.E., Coradin V.T.R., Mendes J.C., 1990. Classes de densidade de madeira para a Amazônia Brasileira. Anais do Congresso Florestal Brasileiro 6, vol. 3, Campos do Jordão, São Paulo, Sociedade Brasileira de Silvicultura, São Paulo, SP, Brazil, pp. 695–699.

Miyawaki A., 2014. Miyawaki method. In: In: Bozzano M., Jalonen R., Thomas E., Boshier D., Gallo L., Cavers S., Bordács S., Smith P., Loo J. (Eds.), Genetic Considerations in Ecosystem Restoration Using Native Tree Species. State of the World’s Forest Genetic Resources – Thematic Study. FAO and Bioversity International, Rome, pp. 133–137.

Mohandass D., Hughes A.C., Mackay B., Davidar P., Chhabra T., 2016. Floristic species composition and structure of a mid-elevation tropical montane evergreen forests (sholas) of the western ghats, southern India. Trop. Ecol. 57, 533–543.

Murthy I.K., Murali K.S., Hegde G.T., Bhat P.R., Ravindranath N.H., 2002. A comparative analysis of regeneration in natural forests and joint forest management plantations in Uttara Kannada district, Western Ghats. Curr. Sci. 83, 1358–1364.

Murthy I.K., Bhat S., Sathyanarayan V., Patgar S., Beerappa M., Bhat P.R., Bhat D.M., Ravindranath N.H., Khalid M.A., Prashant M., Iyer S., Bebber D.M., Saxena R., 2016. Vegetation structure and composition of tropical evergreen and deciduous forests in Uttara Kannada district, Western Ghats under different disturbance regimes. Trop. Ecol. 57, 77–88.

Otsamo A., Ådjers G., Hadi T.S., Kuusipalo J., Vuokko R., 1997. Evaluation of reforestation potential of 83 tree species planted on Imperata cylindrica dominated grassland: A case study from South Kalimantan, Indonesia. New For. 14, 127–143. https://doi. org/10.1023/A:1006566321033

Pebesma E.J., Wesseling C.G., 1998. Gstat: a program for geostatistical modelling, prediction and simulation. Comput. Geosci. 24, 17–31. https://doi.org/10.1016/ S0098-3004(97)00082-4

Prasetyo R.T., Sulistyawati E., Yustiana Y., Hidayati N., 2017. CO2 absorption capability of several local species of Mount Papandayan, Indonesia. In: Proceedings of the International Conference on Sustainable Forest Development in View of Climate Change. Universiti Putra Malaysia, Kuantan, Malaysia, pp. 8–11.

Pratomo I., Hendrasto M., Gunawan D., Soemarno S., Girmansyah D., Herawati W., Widiawati Y., Hidayah H.A., Budiana A., Sukarsa Sungkono J., Chasanah T., Widodo P., Wibowo D.N., Maharadatunkamsi Sulistyadi E., Widodo W., Riyanto A., Trilaksono W., Haryono Susatyo P., Sugiharto Heryanto, Noerdjito W.A., Kahono S., Santosa I., 2012. Ekologi Gunung Slamet: Geologi, Klimatologi, Biodiversitas, dan Dinamika Sosial. LIPI Press, Jakarta.

R Core Team, 2020. R: A languange and environment for statistical computing. R A Lang. Environ. Stat. Comput. Rappaport D., Montagnini F., 2014. Tree species growth under a rubber (Hevea brasiliensis) plantation: Native restoration via enrichment planting in southern Bahia, Brazil. New For. 45, 715–732. https://doi.org/10.1007/ s11056-014-9433-9

Setiawan N.N., Sulistyawati E., 2008. Succession following reforestation on abandoned fields in Mount Papandayan, West Java, in: International Conference on Environmental Research and Technology (ICERT 2008). pp. 444–447.

Setiawan N.N., Sulistyawati E., 2020. A seed rain community in a reforested post-agricultural field and adjacent secondary forest of Mount Papandayan Nature Reserve, West Java, Indonesia. J. For. Res. https://doi. org/10.1007/s11676-020-01151-5

Slik J.W.F., 2005. Assessing tropical lowland forest disturbance using plant morphological and ecological attributes. For. Ecol. Manage. 205, 241–250. https://doi. org/10.1016/j.foreco.2004.10.011

Slik J.W.F., Bernard C.S., Breman F.C., Van Beek M., Salim A., Sheil D., 2008. Wood density as a conservation tool: Quantification of disturbance and identification of conservation-priority areas in tropical forests. Conserv. Biol. 22, 1299–1308. https://doi.org/10.1111/j.1523- 1739.2008.00986.x

Subiakto A., Rachmat H.H., Sakai C., 2016. Choosing native tree species for establishing man-made forest: A new perspective for sustainable forest management in changing world. Biodiversitas 17, 620–625. https://doi. org/10.13057/biodiv/d170233

Sulistyawati E., Sungkar R.M., Maryani E., Aribowo M., Rosleine D., 2006. The biodiversity of Mount Papandayan and the threats. In: International Interdisciplinary Conference in Volcano International Gathering. pp. 106–113.

Sulistyawati E., Ulumuddin Y.I., Zuhri M., 2008. Land- use changes in Mount Papandayan : Its associated impacts on biodiversity and carbon stock. In: International Conference on Environmental Research and Technology. Universiti Sains Malaysia, Penang, Malaysia, pp. 463–467.

Sulistyawati E., Mashita N., Setiawan N.N., Choesin D.N., Suryana P., 2012. Flowering and fruiting phenology of tree species in Mount Papandayan Nature Reserve, West Java, Indonesia. Trop. Life Sci. Res. 23, 81–95.

Sulistyawati E., Fitriana S., 2017. Post fire succession in Tegal Panjang Grassland, Mount Papandayan, West Java, Indonesia. Biodiversitas 18, 1226–1233. https:// doi.org/10.13057/biodiv/d180347

Sulistyawati E., Hidayati N., 2017. Characteristics of local tree species of Mount Papandayan in terms of nutrient absorption, in: Proceedings of the International Conference on Sustainable Forest Development in View of Climate Change. Universiti Putra Malaysia, Kuantan, Malaysia.

Thomas E., Jalonen R., Gallo L., Boshier D., Loo J., 2014. Introduction. In: Bozzano M., Jalonen R., Thomas E., Boshier D., Gallo L., Cavers S., Bordács S., Smith P., Loo J. (Eds.), Genetic Considerations in Ecosystem Restoration Using Native Tree Species. State of the World’s Forest Genetic Resources – Thematic Study. FAO and Bioversity International, Rome, p. 281.

van der Kaars W.A., Dam M.A.C., 1995. A 135,000- year record of vegetational and climatic change from the Bandung area, West-Java, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 117, 55–72. https://doi. org/10.1016/0031-0182(94)00121-N

van Steenis C., Hamzah A., Toha M., 2006. Mountain flora of Java. LIPI, Bogor.

Vink W., 1955. Hamamelidaceae. In: van Steenis C., van Steenis Kruseman M.J. (Eds.), Flora Malesiana - Series 1, Spermatophyta. Noordhoff NV, Djakarta, pp. 363– 379.

Wickham H., 2009. ggplot2: elegant graphics for data analysis. Springer New York. https://doi.org/978-0-387- 98141-3

Yamada I., 1975. Forest ecological studies of the montane forest of Mt. Pangrango, West Java. Japanese J. Southeast Asian Stud. 13, 402–426. https://doi. org/10.20495/tak.15.2_226

Zuhri M., Wiriadinata H., Astuti R.S., Hadiwaluyo S., 2016. Botanical exploration and crater vegetation survey of Mt. Galunggung, West Java. J. Trop. Life Sci. 6, 69–78. https://doi.org/10.11594/jtls.06.02.02


Cover letter
| DOWNLOAD 42KB
No metrics available for this article.